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Plan For Next Three Weeks

My plan for the next three weeks is to cover the following topics:

I Asymptotics: Properties of estimators in large samples.
I Law of Large Numbers, Central Limit Theorem.
I The Delta method.
I Application of asymptotic results to least squares regression.
I Extension to OLS estimation of AR(1).
I Unit roots.
I Spurious regressions and cointegration.
I Finite-sample properties of OLS estimates of AR models.
I Bootstrapping.
I Testing for structural change.

That’s the plan: Let’s see how far I get!
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The Normal Regression Model

Introductory econometrics often focuses on the regression model

Y = Xβ + e (1)

where

I Y is an n × 1 vector of observations of data on the variable to be
explained

I X is an n × k matrix of data on k variables that are independent of all
the error terms ei

I β is a k × 1 vector of coefficients.
I e is an n × 1 vector of error terms that are independently and

identically normally distributed with variance σ2, i.e. e ∼ N
(
0, Inσ

2
)
.

In this case, the OLS estimator β̂ = (X ′X )−1 X ′Y has the property that

β̂ − β ∼ N
(
0, σ2 (X ′X )

−1
)

(2)

This allows you to test hypothesis about the true cofficients β and construct
confidence intervals.
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Why Do We Need Asymptotics?

However, there is often no good reason to assume that errors are normally
distributed. Indeed, there is often no reason to have a priori knowledge of
what is the underlying distribution of the error term.

Without an arbitrary assumption about the distribution of the error term, we
generally cannot derive the exact distribution of our estimator for the sample
size used.

However, it turns out there are powerful results that allow us to make
statements about how the estimator behaves if our sample size becomes
large.

The two key results are:

1 The Law of Large Numbers – this helps us construct estimators that
are consistent, i.e. becomes less and less likely to be far away from the
true value as sample sizes get bigger.

2 The Central Limit Theorem – this tells us what happens to the
distribution of estimators as sample sizes get bigger.
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Convergence in Probability

Consider a sequence of random variables zn each based on a sample of n
observations. We say that zn converges in probability to z as n →∞ if for
all δ > 0

lim
n→∞

Prob (|zn − z |) ≤ δ) = 1 (3)

In other words, no matter how small δ is, the likelihood that zn is no more
than δ away from z gets closer and close to one as n gets larger.

Convergence in probability is often indicated in one of the two ways:

Plim zn = z or zn
p→ z .

For a sequence of matrices Xn, we say Xn
p→ X if every element of Xn

converges in probability to the corresponding element of X .

The concept of covergence in probability is usually applied to assess
estimators. If θ̂n is a finite sample estimator of a population moment θ then
we could like for this estimator to converge in probability to the true value.

We say an estimator θ̂n based on a sample of size n is consistent if θ̂
p→ θ.
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A Useful Result About Convergence in Probability

Continuous Mapping Theorem: Let {zn} denote a sequence of vectors of

estimators based on a sample of size n such that zn
p→ c and let g be a continuous

function at c that does not depend upon the sample size n. Then g (zn)
p→ g(c).

Examples: If z1n
p→ c1 and z2n

p→ c2, then z1n + z2n
p→ c1 + c2, z1nz2n

p→ c1c2

and so on.

This result can also be applied to vectors and matrices of random variables. For
example, let X1n denote a k × k matrix of random variables calculated from

samples of size n such that X1n
p→ C1 where C1 is a nonsingular (invertible)

matrix. Let X2n denote a sequence of k × 1 vectors such that X2n
p→ c2. Then

PlimX−1
1in X2n = Plim{X1in}−1PlimX2n = C−1

1 c2

Karl Whelan (UCD) Asymptotics February 15, 2011 6 / 39



Properties of the Sample Mean

Many estimators in econometrics are constructed from sample means of
various sorts.

Consider a random sample {y1, y2, ....., yn} that are independently and
identically distributed (i.i.d.) with mean µ and variance σ2. The sample
mean of this population, ȳn is an unbiased estimator of µ:

E ȳn = E

(
1

n

n∑
i=1

yi

)
=

1

n

n∑
i=1

E yi =
1

n

n∑
i=1

µ = µ (4)

The variance of the sample mean can also be shown to be

Var (ȳn) = E

(
1

n

n∑
i=1

(yi − µ)

)2

(5)

= E

(
1

n

n∑
i=1

(yi − µ)

)1

n

n∑
j=1

(yj − µ)

 (6)

=
1

n2

n∑
i=1

n∑
j=1

(yi − µ) (yj − µ) =
1

n2

n∑
i=1

σ2 =
σ2

n
(7)
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Generalised Chebyshev’s Inequality
Let X be a random variable with a finite value for E |X |r . Then

Prob{|X − c | > δ} ≤ E |X − c |r

δr
(8)

Proof: Let the probability density function of X be denoted by fX . Let S denote
the set of all x such that |X − c | > δ and S̃ be its complement, i.e. the set of all
x such that |X − c | ≤ δ. Then one can calculate the following expectation

E |X − c |r =

∫
|X − c |r fX (x)dx

=

∫
S

|X − c |r fX (x)dx +

∫
S̃

|X − c |r fX (x)dx

≥
∫

S

|X − c |r fX (x)dx

≥
∫

S

δr fX (x)dx

= δrProb{|X − c | > δ}
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Weak Law of Large Numbers

We can use Chebyshev’s inequality to prove that sample means are
consistent for the case where sample observations are independently and
identically distributed with finite variance.

Using r = 2 the inequality becomes

Prob{|X − c | > δ} ≤ E |X − c |2

δ2
(9)

Now apply to the case of a sample mean

Prob{|ȳn − µ| > δ} ≤ E |ȳn − µ|2

δ2
=

σ2

nδ2
(10)

The probability bound on the right-hand side gets smaller as n →∞.

This means that ȳn
p→ µ: Sample means converge in probability to

population means. This is known as the Weak Law of Large Numbers.

Note, however, the strong assumptions that we made to get this result: i.i.d
yi observations with finite variance. The i.i.d part can be changed and LLN
results still obtained. But, as we shall see, the finite variance assumption is
harder to dispense with.
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Convergence in Distribution

The WLLN is a useful result but it just tells us that certain estimators get
closer to the population values as samples get larger. It doesn’t tell us about
the shape of the distribution of the estimator, which is required for
confidence intervals.

Suppose zn is a statistic constructed from a sample of size n with a
cumulative distribution function given by Fn (u) = Prob{zn ≤ u}. We say
that zn converges in distribution to a random variable z with distribution F
if for all u at which F (u) is continuous, Fn (u) → F (u) as n →∞.

Convergence in distribution is denoted as zn
d→ z . Effectively, it just means

that the graph of z ’s CDF looks more and more like that of z as n →∞.

A key result about convergence in distributions is the Central Limit
Theorem: If a series {y1, y2, ....., yn} is i.i.d with mean µ and finite variance
σ2 then as n →∞ √

n (ȳn − µ)
d→ N

(
0, σ2

)
. (11)

This result provides a justification for the usual hypothesis tests and
confidence intervals for µ, even when the errors are not normally distributed.
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Comments on the Central Limit Theorem

The CLT is one of the most profound results in mathematics or statistics.

Think about what it says for a moment: Take averages of samples of size n
from a distribution—any distribution—and once n gets large, the
distribution of the sample-size adjusted average

√
n (ȳn − µ) takes the form

of a Normal distribution.

How large does n need to get for the distribution of the adjusted sample
average to be approximately normal? It depends.

In the i.i.d case, n = 30 is often used as a conservative rule of thumb,
meaning that by samples of that size, the distribution is usually close to
normal. In practice, the convergence is quicker in many cases.

But what is the distribution of ȳn? One might be tempted to multiply across

by
√

n and subtract µ and assume ȳn
d→ N

(
µ, σ2

n

)
. But as n →∞ the

variance of this distribution goes to zero and it collapses on µ so there is no
distribution.

That said N
(
µ, σ2

n

)
will tend to work well for large values of n and this is

often called the asymptotic distribution, denoted ȳn
a∼ N

(
µ, σ2

n

)
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An Example

Consider the example of taking random draws from a uniform distribution on
[−1, 1], in which case the population mean is zero and standard deviation is
0.577.

The next few graphs shows the results of computer simulations based on
10,000 replications, in which we take sample averages and then chart the
adjusted sample average

√
nȳ .

The amount of data points used to construct the sample averages increases
with each chart. The blue line on the chart is the normal distribution
corresponding to the mean and variance of the distribution in the chart.

The graphs also show figures for the skewness (slantedness or asymmetry)
and excess kurtosis (presence of fat tails) of the distribution. Both of these
values should be zero for a normal distribution.

We see that for this distribution, the CLT works very well for samples much
smaller than n = 30.
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Uniform Distribution
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Adjusted Averages from a Uniform Distribution: n = 2
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Adjusted Averages from a Uniform Distribution: n = 3
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Adjusted Averages from a Uniform Distribution: n = 4
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Adjusted Averages from a Uniform Distribution: n = 6
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Adjusted Averages from a Uniform Distribution: n = 10
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A More Complex Example

In the uniform distribution case, the distribution of sample averages becomes
approximately normal by about n = 8.

But this isn’t always the case. Consider the following example: Define the
variable Zt = X 4

t where Xt is uniformly distribution on [−1, 1].

The distribution of Zt is highly skewed distribution with no negative values,
a mean of 0.2 and a maximum possible value of 1.

The graph on the next page shows that the distribution of
√

n
(
Z̄t − 0.2

)
looks like.

In this example, the distribution of the adjusted sample averages are also
very skewed for small values of n. However, once n gets to 10, the
distribution looks a bit more bell-shaped and the Normal approximation
works pretty well by the time we get to n = 30.

But only in very large samples over over 1000 do we see the skewness fall to
low levels.
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Distribution of Uniform Variable To The Fourth Power
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Adjusted Averages: n = 2
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Adjusted Averages: n = 3
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Adjusted Averages: n = 4

-0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50 Mean       0.00277 
Std Error       0.26681 
Skewness       0.67190 
Exc Kurtosis       0.18633

Karl Whelan (UCD) Asymptotics February 15, 2011 23 / 39



Adjusted Averages: n = 5
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Adjusted Averages: n = 10
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Adjusted Averages: n = 15
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Adjusted Averages: n = 20
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Adjusted Averages: n = 30
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Adjusted Averages: n = 1000
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Adjusted Averages: n = 5000
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Computer Simulation Methods

These graphs were made using computer simulations. These methods are
incredibly helpful for understanding statistical distributions. In this example,
the simulations illustrate how analytical results based on asymptotic
theorems often work well. However, we will also see examples where
asymptotic approximations don’t work well and, in these cases, computer
simulations are often used to provide a better idea as what the finite-sample
distribution of estimators look like.

The RATS program used to make the uniform distribution charts is repeated
on the next page. How to interpret the program?

I do ssize=1,10 tells RATS to execute the commands that follow
(taking averages for samples of size ssize) for a value of ssize=1 and
then when that’s finished to repeat the calculations for ssize=2 and so
on up to ssize=10. The loop is completed with end do ssize.

I The do k=1,10000 loop gets us 10,000 sample averages that can be
drawn as a histogram to give us a good idea of the true distribution of
the various sample means.

I set x 1 ssize = %uniform[1,1] uses the RATS random number
generator to get draws from the required uniform distribution.

Karl Whelan (UCD) Asymptotics February 15, 2011 31 / 39



RATS Program to Illustrate the Central Limit Theorem
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Multivariate Version of the CLT

These examples described what happened when taking averages of a single
variable. Sometimes, we will want to use a vector that describes multiple
averages of different variables.

In this case, the Central Limit Theorem easily generalises.

Multivariate Central Limit Theorem: Consider a sequence of n × k
matrices of random variables, yn (n = 1, 2, 3...) each with k different
columns each made of up n i.i.d. observations with finite variances and
covariances. Then the sequence of 1× k vectors of sample means ȳn has the
property that √

n (ȳn − µ)
d→ N (0,V ) . (12)

where
µ = E y

and
V = E

(
(y − µ) (y − µ)′

)
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Useful Results for Convergence in Distribution

Continuous Mapping Theorem: Let {Xn} denote a sequence of vectors of k

different estimators based on a sample of size n such that Xn
d→ z (i.e. each of

the k estimators converges in probability to the corresponding slots in the c
vector) and let g : Rk → Rm be a continuous function at c that does not depend

upon the sample size n. Then g (Xn)
d→ g(z).

Slutsky’s Theorem: This tells us we can mix together variables that converge in
distribution with other variables that converge in probability to a particular value.

If zn
d→ z and cn

p→ c then

1 zn + cn
d→ z + c

2 cnzn
d→ cz

3 zn

cn

d→ z
c
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Test Procedures Based on the CLT

So you find out that for the i.i.d. sequence yi with mean µ and finite
variance σ2

√
n

(
ȳn − µ

σ

)
d→ N (0, 1) . (13)

Perhaps you might imagine using this as a test for figuring out the value for
µ. However, if you don’t know µ, then presumably you don’t know σ2 either.
It turns out though, that you can use any consistent estimate of σ2 instead.

The WLLN and Continous Mapping Theorem for Plims tells us that sample
second moment is a consistent estimator:

σ̂n =

√√√√1

n

n∑
i=1

(yi − ȳn)
2 p→ σ ⇒ σ

σ̂

p→ 1 (14)

The results from the last slide now tell us that the standardised mean
constructed using the sample standard deviation also converges to the
standard normal distribution:

√
n

(
ȳn − µ

σ̂

)
=
√

n

(
ȳn − µ

σ

)
σ

σ̂

d→ N (0, 1) . (15)
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The Delta Method

Consider the case where we know that an estimator θn behaves such that

√
n (θn − θ)

d→ N
(
0, σ2

)
. (16)

Now suppose we want to know the asymptotic distribution of a nonlinear
transformation g (θn). What can we tell about its asymptotic distribution?

The mean value theorem from calculus tells us that there exists a value θ∗n
between θn and θ such that

g (θn) = g (θ) + g ′ (θ∗n) (θn − θ) (17)

This means that
√

n (g (θn)− g (θ)) = g ′ (θ∗n)
√

n (θn − θ) (18)

We know the asymptotic distribution of
√

n (θn − θ) and g ′ (θ∗n)
p→ g ′ (θ).

This means
√

n (g (θn)− g (θ))
d→ (g ′ (θ))

(√
n (θn − θ)

)
∼ N

(
0, σ2 (g ′ (θ))

2
)

(19)
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Example of the Delta Method

What is the asymptotic distribution of the log of the mean of a random
sample of i.i.d. observations?

g(x) = log x ⇒ g ′ (x) = 1
x .

If we take i.i.d. observations {yi} from a sample of size n and calculate the
average ȳn, we know that

√
n (ȳn − µ)

d→ N
(
0, σ2

)
. (20)

From the Delta method, we can calculate that

√
n (log ȳn − log µ)

d→ N

(
0,

(
σ

µ

)2
)

. (21)

This is because in this case g ′ (θ)2 = g ′ (µ)2 =
(

1
µ

)2
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Multivariate Delta Method

Consider the case where we know that a sequence of 1× k vector θn of
estimators behaves such that

√
n (θn − θ)

d→ N (0,V ) . (22)

where
V = E

(
(y − µ) (y − µ)′

)
(23)

Now suppose we want to know the asymptotic distribution of some nonlinear
transformation g (θn) where g : Rk → Rm is a differentiable function. Then

√
n (g (θn)− g (θ))

d→ N (0,G ′VG ) (24)

where G is a matrix of derivatives of g evaluated at θ:

G =
∂

∂θ
g (θ)′ (25)
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Example of the Delta Method

Consider the case where we know that

√
n ((θ1n, θ2n)− (θ1, θ2))

d→ N

(
0,

(
σ2

1 0
0 σ2

2

))
. (26)

We can test hypotheses about the ratio θ1

θ2
because the Delta method tells

us that
√

n

(
θ1n

θ2n
− θ1

θ2

)
d→ N (0, ω) (27)

where

ω =
(

1
θ2

−θ1

θ2
2

)(
σ2

1 0
0 σ2

2

)( 1
θ2
−θ1

θ2
2

)
(28)

=
σ2

1

θ2
2

+

(
θ1

θ2
2

)2

σ2
2 (29)
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